Proximal Primal-Dual Optimization Methods

نویسندگان

  • Audrey Repetti
  • Emilie Chouzenoux
  • Jean-Christophe Pesquet
چکیده

In the field of inverse problems, one of the main benefits which can be drawn from primal-dual optimization approaches is that they do not require any linear operator inversion. In addition, they allow to split a convex objective function in a sum of simpler terms which can be dealt with individually either through their proximity operator or through their gradient if they correspond to smooth functions. Proximity operators constitute powerful tools in nonsmooth functional analysis which have been at the core of many advances in sparsity aware data processing. Using monotone operator theory, the convergence of the resulting algorithms can be shown to be theoretically guaranteed. In this paper, we provide a survey of the existing proximal primal-dual approaches which have been proposed in the recent literature. We will also present new developments based on a randomization of these methods, which allow them to be applied block-coordinatewise or in a distributed fashion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Point Nonlinear Rescaling Method for Convex Optimization

Nonlinear rescaling (NR) methods alternate finding an unconstrained minimizer of the Lagrangian for the equivalent problem in the primal space (which is an infinite procedure) with Lagrange multipliers update. We introduce and study a proximal point nonlinear rescaling (PPNR) method that preserves convergence and retains a linear convergence rate of the original NR method and at the same time d...

متن کامل

On the convergence of the entropy-exponential penalty trajectories and generalized proximal point methods in semidefinite optimization

The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. As an application, the proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered, and the convergence of primal and dual sequences is proved.

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A primal-dual algorithm framework for convex saddle-point optimization

In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the co...

متن کامل

Dual convergence of the proximal point method with Bregman distances for linear programming

In this article, we consider the proximal point method with Bregman distance applied to linear programming problems, and study the dual sequence obtained from the optimal multipliers of the linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as convergence rate results for the primal sequence, for a suitable family of Bregman distances. These resul...

متن کامل

Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring

We present primal-dual decomposition algorithms for convex optimization problems with cost functions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applications to image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014